Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques

نویسندگان

  • Hasan Metin Aktulga
  • Sagar Pandit
  • Adri C. T. van Duin
  • Ananth Grama
چکیده

Modeling atomic and molecular systems requires computation-intensive quantum mechanical methods such as, but not limited to, density functional theory (DFT) [11]. These methods have been successful in predicting various properties of chemical systems at atomistic detail. Due to the inherent nonlocality of quantum mechanics, the scalability of these methods ranges from O(N3) to O(N7) depending on the method used and approximations involved. This significantly limits the size of simulated systems to a few thousands of atoms, even on large scale parallel platforms. On the other hand, classical approximations of quantum systems, although computationally (relatively) easy to implement, yield simpler models that lack essential chemical properties such as reactivity and charge transfer. The recent work of van Duin et al [9] overcomes the limitations of classical molecular dynamics approximations by carefully incorporating limited nonlocality (to mimic quantum behavior) through empirical bond order potential. This reactive molecular dynamics method, called ReaxFF, achieves essential quantum properties, while retaining computational simplicity of classical molecular dynamics, to a large extent. Implementation of reactive force fields presents significant algorithmic challenges. Since these methods model bond breaking and formation, efficient implementations must rely on complex dynamic data structures. Charge transfer in these methods is accomplished by minimizing electrostatic energy through charge equilibriation. This requires the solution of large linear systems (108 degrees of freedom and beyond) with shielded electrostatic kernels at each timestep. Individual timesteps are themselves typically in the range of tenths of femtoseconds, requiring optimizations within and across timesteps to scale simulations to nanoseconds and beyond, where interesting phenomena may be observed. In this paper, we present implementation details of sPuReMD (serial Purdue Reactive Molecular Dynamics) program, a unique reactive molecular dynamics code. We describe various data structures, and the charge equilibration solver at the core of the simulation engine. This Krylov subspace solver relies on an ILU-based preconditioner, specially targeted to our application. We comprehensively validate the performance and accuracy of sPuReMD on a variety of hydrocarbon systems. In particular, we show excellent per-timestep time, linear time scaling in system size, and a low memory footprint. sPuReMD is available over the public domain and is currently being used to model diverse systems ranging from oxidative stress in bio-membranes to strain relaxation in Si-Ge nanorods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques

Molecular dynamics modeling has provided a powerful tool for simulating and understanding diverse systems – ranging from materials processes to biophysical phenomena. Parallel formulations of these methods have been shown to be among the most scalable scientific computing applications. Many instances of this class of methods rely on a static bond structure for molecules, rendering them infeasib...

متن کامل

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

Hybrid Atomistic–Continuum Formulationsand the Moving Contact-Line Problem

We present a hybrid atomistic–continuum computational framework for the treatment of dense fluid problems with emphasis on the coupling of molecular dynamics with continuum (finite element/spectral) methods for problems involving multi-fluid dynamics in the presence of multi-fluid interfaces. The technique is an extension of the single-fluid framework already presented by the author. The well-k...

متن کامل

Simulation of RDX Decomposition Interacting with Shock Wave via Molecular Dynamics

Cylotrimethylenetrinitramine (RDX), with the chemical formula C3H6N6O6,is an energetic organic molecule used widely in military and industrial commodities ofexplosives. By stimulating RDX through exerting temperature or mechanical conditionssuch as impact or friction, decomposition reaction occurs at a very high rate. Moleculardynamics techniques and LAMMPS code with Rea...

متن کامل

Adiabatic path integral molecular dynamics methods. II. Algorithms

Efficient numerical algorithms are developed for use with two finite temperature semiclassical approximations to quantum dynamics both of which require trajectories generated on potentials of mean force derived from the path integral expression for the density matrix. The numerical algorithms are formed from the combination of a classical adiabatic relation similar to that used in the Car–Parri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012